Skip to contents

This function generates a list of tibbles representing the Danish health registers and the data necessary to run the algorithm. The dataset contains individuals who should not be included in the final classified cohort.

Usage

non_cases()

Value

A named list of 9 tibble::tibble() objects, each representing a different health register: bef, lmdb, lpr_adm, lpr_diag, kontakter, diagnoser, sysi, sssy, and lab_forsker.

Details

The generated data is used in testthat tests to ensure the algorithm behaves as expected under a wide range of conditions, but it is also intended to be explored by users to better understand how the algorithm logic works and to be shown in the documentation.

Examples

non_cases()
#> $bef
#> # A tibble: 7 × 3
#>   pnr        koen foed_dato
#>   <chr>     <int> <chr>    
#> 1 nc_pcos_1     2 19800101 
#> 2 nc_pcos_2     2 19800101 
#> 3 nc_pcos_3     2 19800101 
#> 4 nc_preg_1     2 19800101 
#> 5 nc_preg_2     2 19800101 
#> 6 nc_preg_3     2 19800101 
#> 7 nc_preg_4     2 19800101 
#> 
#> $lmdb
#> # A tibble: 7 × 6
#>   pnr       volume eksd     atc       apk indo   
#>   <chr>      <dbl> <chr>    <chr>   <dbl> <chr>  
#> 1 nc_pcos_1     10 20210101 A10BA02     5 0000276
#> 2 nc_pcos_2     10 20190101 A10BA02     5 0000276
#> 3 nc_pcos_3     10 20190101 A10BA02     5 0000276
#> 4 nc_preg_1     10 20180101 A10         5 0000000
#> 5 nc_preg_2     10 20180101 A10         5 0000000
#> 6 nc_preg_3     10 20200101 A10         5 0000000
#> 7 nc_preg_4     10 20200101 A10         5 0000000
#> 
#> $lpr_adm
#> # A tibble: 7 × 4
#>   pnr       c_spec recnum d_inddto
#>   <chr>     <chr>  <chr>  <chr>   
#> 1 nc_pcos_1 08     1      20180101
#> 2 nc_pcos_2 08     1      20170101
#> 3 nc_pcos_3 08     1      20170101
#> 4 nc_preg_1 08     1      20180101
#> 5 nc_preg_2 08     1      20180101
#> 6 nc_preg_1 08     2      20180101
#> 7 nc_preg_2 08     3      20180101
#> 
#> $lpr_diag
#> # A tibble: 3 × 3
#>   recnum c_diag c_diagtype
#>   <chr>  <chr>  <chr>     
#> 1 1      149    A         
#> 2 2      DO00   A         
#> 3 3      DZ33   A         
#> 
#> $kontakter
#> # A tibble: 7 × 4
#>   cpr       dw_ek_kontakt hovedspeciale_ans       dato_start
#>   <chr>     <chr>         <chr>                   <chr>     
#> 1 nc_pcos_1 1             medicinsk endokrinologi 20210101  
#> 2 nc_pcos_2 1             medicinsk endokrinologi 20190101  
#> 3 nc_pcos_3 1             medicinsk endokrinologi 20190101  
#> 4 nc_preg_3 1             abc                     20200101  
#> 5 nc_preg_4 1             abc                     20200101  
#> 6 nc_preg_3 2             abc                     20200101  
#> 7 nc_preg_4 3             abc                     20200101  
#> 
#> $diagnoser
#> # A tibble: 3 × 4
#>   dw_ek_kontakt diagnosekode diagnosetype senere_afkraeftet
#>   <chr>         <chr>        <chr>        <chr>            
#> 1 1             DI10         A            Nej              
#> 2 2             DO00         A            Nej              
#> 3 3             DZ33         A            Nej              
#> 
#> $sysi
#> # A tibble: 7 × 4
#>   pnr       barnmak speciale honuge
#>   <chr>       <int> <chr>    <chr> 
#> 1 nc_pcos_1       0 53       2101  
#> 2 nc_pcos_2       0 53       1901  
#> 3 nc_pcos_3       0 53       1901  
#> 4 nc_preg_1       0 53       2001  
#> 5 nc_preg_2       0 53       2001  
#> 6 nc_preg_3       0 53       2001  
#> 7 nc_preg_4       0 53       2001  
#> 
#> $sssy
#> # A tibble: 7 × 4
#>   pnr       barnmak speciale honuge
#>   <chr>       <int> <chr>    <chr> 
#> 1 nc_pcos_1       0 53       2101  
#> 2 nc_pcos_2       0 53       1901  
#> 3 nc_pcos_3       0 53       1901  
#> 4 nc_preg_1       0 53       2001  
#> 5 nc_preg_2       0 53       2001  
#> 6 nc_preg_3       0 53       2001  
#> 7 nc_preg_4       0 53       2001  
#> 
#> $lab_forsker
#> # A tibble: 7 × 4
#>   patient_cpr samplingdate analysiscode value
#>   <chr>       <chr>        <chr>        <dbl>
#> 1 nc_pcos_1   20210101     NPU27300      48  
#> 2 nc_pcos_2   20190101     NPU03835       6.5
#> 3 nc_pcos_3   20190101     NPU03835       6.5
#> 4 nc_preg_1   20170301     NPU27300      48  
#> 5 nc_preg_2   20180301     NPU03835       6.5
#> 6 nc_preg_3   20190301     NPU03835       6.5
#> 7 nc_preg_4   20200301     NPU27300      48  
#>