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Overview – intro for survival analysis
• Example of survival analysis
• Data on survival
• Lexis diagrams and study design
• Survival function, densities and hazard rates
• Kaplan-Meier estimate of survival curve
• Log-rank test
• Censoring vs competing risks
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Survival data
Caerphilly study – description:
Follow-up study focusing on risk factors for 
cardiovascular diseases.

Inclusion period: July 1979 to October 1983.
Study population: Men aged 43-61 at the start.
Primary outcomes: Myocardial infarction (MI) or 
death.
End of study: February 1999.
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Survival data - example
• Caerphilly study
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Lexis diagram for Caerphilly study (zoomed)
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Survival data
• Caerphilly study
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Censoring vs competing risk wrt Kaplan-Meier
• Key assumption:

Censored individuals have the same future risk as those 
remaining in the study

• This is called non-informative (right) censoring
• Can typically not be checked in the observed data

• What happens if we study time to CVD diagnosis?
• People may die before diagnosis – is this censoring?
• No - people who died are no longer at risk of getting a 

CVD diagnosis
• Here death is a competing risk (but CVD is not a 

competing risk for death!)
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Main problem with competing risk
• Cumulative risk is over-estimated
• Equivalently: Survival probability is under-estimated
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Functions in survival analysis - relationships
• Any one of the three uniquely determines the two other
• The hazard is often taken as the fundamental quantity, since

• Implications:

Or:

• Also you will often encounter the integrated hazard defined by
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Cox regression – model specification
• Linear model for log-hazard rates

• Equivalent to

• All individuals have the same shape of (log-)hazard
• Log-hazards are “shifted up or down”
• Hazard ratios are constant at any given time
 Proportional Hazards (PH) assumption

• PH assumption concerns all follow-up time
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Hazard for a simple parametric model: Weibull
• Weibull distribution:

• Mean

Where is the incomplete gamma function
• is called the scale parameter, the shape parameter
• Defining characteristic:

Hazard is monotone, either decreasing ( ), constant ( ), 
or increasing ( )

Remember: This is true all the way from zero to infinity!
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Weibull distribution: survival functions
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Weibull distribution: hazard functions
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Weibull distribution: hazard functions

14



Weibull distribution: survival functions
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Weibull distribution: hazard functions
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Weibull distribution: hazard functions
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Checking PH assumption
• Time in study as time scale
• We estimate HR for smoking at study entry with respect 

to death
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Checking PH assumption
• Time in study as time scale
• We estimate HR for smoking at study entry with respect 

to death
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Checking PH assumption – model based (I)
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Checking PH assumption – model based (II)
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Thanks for your attention – questions welcome!

(Djursland, July 2015 – H Støvring)
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